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Nonlinear mechanical magnetic, and thermal effects are investigated in mag- 
netizable media with inner moment of momentum in a rotating magnetic field. 
The moments of forces produced by the magnetizable fluid and acting on a 
stationary spherical vessel, the amplitude and phase shift of the electromotive 
force (emf) induced in a coil positioned in the magnetizable fluid, and the 
quantity of energy dissipated per unit volume of fluid per time unit are deter- 
mined. It is shown that in a strong-magnetic field hysteresis effects are always 
displayed by these quantities. 

The hysteresis of, for instance, the moment of forces induced by the magnetiz- 
able fluid acting on the vessel is evidenced by the fact that with a slow (quasistatic) 
increase of the field angular rotation velocity up to some critical value, thedimension- 
less moment of forces monotonically decreases, and when the critical velocityis reach- 
ed, it abruptly drops. As the field rotation velocity is further increased, the dimension- 

less moment of forces again decreases monotonically. Such abrupt spontaneous jump 
is also observed when the field rotation velocity is slowly decreased from some fairly 
high value. However the vertical value of the field angular velocity is then different. 
It was shown that the magnitude of the emf phase shift and the quantity of dissipated 

energy due to hysteresis depend on the fluid permeability. 
Mathematical models of magnetizable media were proposed in [l - 41. These 

models were used in a number of investigations of magnetizable fliiid behavior in a 
rotating magnetic field on the assumption of low velocity of field rotation, when the 

equations defining the medium are linear [5 - 71 and, also, without such assump- 

tion [B - lo]. The latter had disclosed the hysteresis of a number of physical propert- 
ies of the magnetizable fluid, such as magnetization intensity, the lag angle of the 
magnetization intensity vector relative to the magnetic field vector, the inner mom- 

ent of momentum, and the macroscopic angular velocity, This effect was explained in 
[B] by the separation of the rotary motion of ferromagnetic suspension particles, when 
the vector of the particle magnetic moment lags behind the magnetic field vector by 

90”. 

1. bet us consider the force moment m induced by the magnetizable fluid and 
acting on a stationary spherical vessel in a uniform external magnetic field Ha rotat- 
ing at constant angular velocity Qr in some plane. Absence of an inner moment of 
momentum in the fluid is assumed (suspension particles do not interact between them- 
selves). on this assumption the fluid is at rest [7]. The -moment m is determined 
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by the formula 
. 

71ti = 
1 

2%,i ( psnl - T&) nl” do (1.1) 

Y 

where X is the surface of the sphere of radius R; rj, nn’, sijs are, respectively, 
the radius vector of a point of the surface, the unit vector of the inner normal to the 

sphere surface, and the Levi-Civita pseudotensor. The tensor rij of Maxwellian 
stresses of the magnetic field outside the sphere surface and the stress tensor pij in 
the stationary fluid are defined in magnetostatics approximation by the formulas [4] 

1I.B; 
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S 

(1.2) 

where K, M, B, p are, respectively, the inner moment of momentum of a unit 

volume, magnetization intensity, and pressure; rs is a constant phenonzenological 
coefficient. The magnetostatics approximation implies that condition R2 a,’ / c2 

< 1, where c is the speed of light in vacuum, is satisfied. 
The equations derived in [4] for the moment of momentum of a volume unit in 

the case, when the phenomenological coefficients are independent of the field, with- 
out taking into account cross effects and in the absence of an internal moment of 
momentum flux, are in the magnetostatics approximation of the form 

ale K 
---_t- [M,H], T =z f[K,M]- h’;xH dt= z, (1.3) 

div(Hj-4nM)=O, rotH =(I 

where T, 1, x are phenomenological coefficients which we assume constant. The 

equation of energy is separated from system (1.3), and will be considered later. 
We seek a steady solution of system (1.3) on the assumption that M and K are 

homogeneous quantities, i. e. independent of coordinates. Vector M obviously lies 
in the plane of field rotation, and vector K is normal to that plane. 

The assumption of homogeneous magnetization implies that the magnetizable fluid 
is also homogeneous and linked to the external magnetic field H, by the relation 

II -I- $-M = H, (1.4) 

Taking into account the homogeneity of the internal moment, from formulas( 1.1) 
and (1.2) we obtain that the vector of moment m is directed along vector K and 
that their dimensionless absolute values are the same, i. e. 

m* _ 
3mT, K 

4nR”I &f 
=_-__K* 

‘“f 

The steady solution of system ( 1.3) is of tie form [5 - lo] 

(1.5) 

M ,/ = 
XH 

1 + 62 (1 - K*)2 ’ M, = /3(1 - K*)M,,, p = Q,T (1.6) 
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where M 11, ML are projections of vector M on directions parallel and normal to 

field H , respectively. The quantity K* is obtained from the algebraic equation 

K* - F(i - A-*) xH=q 
1 + p (1 - I(*)2 

=O, F=i- (1.7) 

and the magnetic field H is obtained in the form of an implicit function from Eqs. 
(1.6) and (1.7) and from the relation 

which follows from (1.4). 

Eliminating H from Eq. (1.7) we obtain the algebraic equation for K* 

E (3 + 4l@ (K* - i) 
li* -I- (3+4nx)s+Ybs(t-A-*)2 = 0, 

xH,%5 

& = 1 (3 + 4Jc+ 

The dependence of K*, or of the equal to it quantity nt* on fl” 

ed by parameters e and X, but the qualitative behavior of function 

(1.8) 

(1.9) 

is determin- 

A-* (B”) 

Fig. 1 

depends only on 8 . This dependence is shown in Fig. 1 for x -~-. 0.G and E <8 
(curve I, E :.= 4), E =- 8 (curve Z), e < 8 (curve 3, E == 12). when r > 8 

the internal moment K* has in the interval (p12, pz2) three values: two stable ones 
and the intermediate unstable. The cirtical values of prl p2 and the respective 

critical values K,* and K,* of the dimensionless moment are determined from the 

equation dp2 I dK * = 0 whose solutions are 

K*, = 3F ‘f 1/E (E - 8) 
1,Z G (F + 1) 

(1.10) 

It follows from the foregoing that when F > 8 hysteresis of the internal moment 

is present, and the critical values PI and ij2 are points of transition from one branch 
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of curve 3 to another. The transition direction is shown in Fig. 1 by arrows. A 
similar result was obtained in [8] for the internal moment, but without taking into 
account variation of the external magnetic field in the magnetizable fluid. 

2. Let us consider the effect of the emf induction in a cylindrical coil in a 
magnetizable fluid, with the coil axis located in the plane of field rotation. The emf 
E per turn of coil is defined by the Faraday induction law 

(2.1) 

where S is the surface stretched over a single coil turn, and H, and M, are 
projections of the magnetization and magnetic field vectors on the normal to that 

surface. 
Formulas (2. l), (1.4), (1.6), and (1.8) imply that the coil emf E varies accord- 

ing to a harmonic law with frequency Qf, while the amplitude of E, and the shift 
of phase cp are determined by formulas 

(2.2) 

where 5’ is the area of one coil turn. The phase shift cp is determined so that in the 
absence of magnetizable fluid rp = O (e. g., relative to the emf generated in the 
same coil oriented in the same way, but outside the vessel with fluid). 

For low field rotation velocity af2r2 (( 1 formulas (2.2) assume the form 

&=~(3+4n%), qe=$$ QfSffo I (2.3) 
i + 4xx 

The parameter which qualitatively determines the dependence of the dimension- 
less emf E,* = cE, / $21 SH, on p2 is E . This dependence is shown in Fig. 1 
for several E (curves 1’ - 3’, x = 0.6, E =: 4, 8, 12). These curves are 

analogous to curves 1-3 for the internal moment. The regression points PI and 

Pa of curve 3 are the same as for the internal moment and are determined by 

solutions (1.10) in conjunction with formula (1.9). Hence the hysteresis effect is 

unavoidable in the coil emf when E > 8. 
The dependence of phase shift rp on 0s is shown in Fig. 2 for several & and X. 

When E < 8 (curve I, E, = ii, x :== 0.1) function q (pa) is single-valued with 
its maximum at point PO2 determined by the condition that the respective internal 

moment Ks* 
F 

K,,* = A , E + Lh h(x) =: 1 -I- 3 y& 
(2.41 

If E > 8 t the function cp (p”) in the interval (o12, Pz2) is ambiguous, and 
the form of the curve substantially depends on parameter x , and has a loop with a 
self-intersection point for h (x) > h, (curve 2, E = 12? x 0.07), or is free of 
self-intersection when 3L (x) < h; (curve 3? F, = 12, x .= 0.02). The critical 
parameter J,, is determined by formula 
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The foregoing implies that the pantity cp must evince the hysteresis effect when 
E > 8 , but differently for h < h, or h > A,. Transition from one branch of 

I J 
I50 pX ID0 

Fig. 2 

the curve to another at slow (quasi- 

static) variation of the field rotat- 
ion velocity is indicated in the dia- 

gram by arrows. 

3. Let us consider the energy 

dissipation in a magnetizable fluid 
in a rotating magnetic field. The 

energy Q dissipated per unit of 
volume in a unit of time is defined 
in the magnetostatics approximation 

is r.41 

Q=(H-+j(+f (3.1) 

[K, hl]) + f piieijmKm 

From formulas (3.1) and (1.2) and solutions (1.7) we have 

which for slow field rotation velocity fis < 1 reduces to the form 

Q* _. w2 (1-t EX) 
(t: -+- 1)2 (3 -i 41~)s 

As p” + 00 , Q* -+ 1 asymptotically. 

The dependence of Q* on p2 is shown in Fig. 3 for several E and x . For 
&<8 the dependence Q* (p2) is single-valued and monotonic, if GX < 1 

(curve 1, E = 4, x = 0.1) , or has a single maximum at point poo, if EX > 

1 (curve 2. E = 4, x = 0.5). Parameter par, is determined by the condition 
that the respective internal moment 

K,,* = (EX - 1)/(8X + 2x - 1) 

If E > 8 we have a section of ambiguity (fi12, b2”) in which three values of 

B” correspond to a single Q* . The critical values of PI and be are determin- 

ed by formulas (1.9) and (1.10). The upper and lower branches of curve Q* (fi”) 
represent stable solutions, while the intermediate branch relates to an unstable solution. 
In this case a slow decrease or increase of the field rotation velocity is bound to prod- 

uce the hysteresis effect in Q*. &pending on x its hysteresis can be of four differ- 

ent types that correspond to different positions of Koo* in the interval (Kl*, KS*). 
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We have for K,,* < 0 curve 3, t: = 12, x = 0.08): for K,* > Koo* > 0 
curve 4, E = 12, x = 0.12); for K,% > K,,* > K1* curve 5, E -:: 12? 
x = 0.6); and for K,,* > K,* curve G’? r = 12, x = 0.71). 

Fig. 3 

Variations of the medium and field energy U per unit of volume of the medium 
in the absence of external heat influx to it is defined by the equation 

dU/dt =Q (3.9) 

Let us assume that in the absence of a field and internal rotation the energy U is 
U,, ::: cyT, where T is the temperature of the medium and c, its specific heat. 
The total energy U is then [4] 

Taking this into account we reduce Eq. (3.2) to the form 

dT / dt = Q/c, 
which shows that the temperature increase with time, 

The obtained here results can be readily tested experimentally, unlike those in 

[8 -101. A rotating magnetic field can be easily produced inside two orthogonal 
coils in which the alternating current must be of the same frequency but with phases 

shifted by 90”. Frequency in the region of hysteresis effects must be of the order of 
10 / 7 (according to the estimate in [t?] z - 20-5S). Comparison of experimental 
and theoretical results will make possible the determination of the phenomenological 

coefficients T, +S, I. 

The author thanks V. V. Gogosov and V. A. Naletova for their ‘interest in this 
work and useful discussion. 
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